Discover how generative learning transforms passive students into active knowledge creators. Learn practical strategies including summarising, mapping, and self-explaining that boost retention.
Main, P (2021, August 31). Generative Learning: A teacher's guide. Retrieved from https://www.structural-learning.com/post/generative-learning-a-teachers-guide
What is Generative Learning?
Generative learning is one of the most effective approaches to deep learning, backed by decades of cognitive science research. Unlike passive reception of information, generative learning requires students to actively make sense of material by creating their own understanding. When students summarise, create concept maps, generate questions, or explain ideas in their own words, they build stronger and more durable knowledge. This guide explores the research behind generative learning and practical strategies you can implement immediately.
Key Takeaways
Beyond Passive Learning: Discover why students who generate their own summaries outperform peers by 30% and how to activate this powerful cognitive process
The SOI Framework: Master the three-stage model that transforms how students select, organise and integrate knowledge for lasting understanding
Nine Classroom Strategies: From mind mapping to peer teaching: practical techniques that turn students into active knowledge creators, not passive receivers
Individual Learning Differences: Why generative strategies work differently for each student and how to adapt your approach for maximum impact
Feature
Summarizing
Mind Mapping
Peer Teaching
Best For
Processing complex texts and identifying main ideas
Visual learners connecting concepts and vocabulary
Deepening understanding through explanation
Key Strength
30% improvement in comprehension tests
Links new knowledge to existing understanding
Activates knowledge through teaching others
Limitation
Requires strong writing skills
May be challenging for non-visual learners
Needs confident students and time
Age Range
Upper primary to secondary
All ages with adaptation
Middle primary to secondary
This theory proposes that the depth of our understanding, or what we often term as "deep learning", relies on the learner's ability to actively integrate new information into their existing knowledge base.
Key to this theory is the notion of the 'generative process', which involves the cognitive work of organizing and integrating information during the learning process. This is no abstract concept, but a practice that can yield powerful results in the classroom.
Consider the English teacher who instructs students to draw concept maps linking new vocabulary words to familiar ones. Here, the generative learning strategy of summarizing and mapping concepts enables students to connect new declarative concepts to pre-existing knowledge, fostering a deeper understanding.
Research supports this approach, with one study showing that students employing generative strategies outperform their peers on tests of comprehension by as much as 30%.
Educational psychologists emphasize the role of the learner as an active source of learning, where knowledge activation and knowledge creation are central to the learning process.
As a renowned educational psychologist, puts it, "Learning is not a passive absorption of information, but an active process of constructing understanding, where students' pre-existing knowledge serves as a foundation upon which new learning can be built."
However, Generative Learning Theory recognizes individual differences among learners. Not all students will use the same strategies or learn at the same pace. Some may need additional support to engage in generative learning, while others may excel with minimal guidance.
The generative models of learning are not one-size-fits-all solutions, but tools that can be adapted to suit the unique needs of each learner.
In essence, Generative Learning Theory encourages learners to become active participants in their own education, transforming new information into meaningful, lasting knowledge. It's a powerful reminder that in learning, as in life, we get out what we put in.
How Can I Use Generative Learning Strategies in My Classroom?
Teachers can implement generative learning through nine proven strategies including concept mapping, self-explanation, peer teaching, and creating practice questions. Start with simple techniques like having students summarize lessons in their own words, then progress to more complex activities like creating analogies or teaching concepts to classmates. Research shows these active learning methods can improve student performance by up to 30% compared to passive learning.
In the dynamic world of primary and secondary education, embracing Generative Learning Theory can truly revolutionize your teaching approach, fostering knowledge activation and helping students construct mental models that promote deep, lasting learning. Here are nine ways to bring generative learning into your classroom:
Elucidation of Key Concepts: Clearly explain key concepts and encourage students to explain these concepts in their own words. This active reformulation helps embed new learning into existing knowledge structures.
Example-Based Learning: Use concrete examples that relate to students' experiences, enhancing comprehension and recall.
Mind Mapping: Encourage students to create a spider diagram or similar graphic organizers to visually represent and connect ideas.
Peer Teaching: Students teaching others can cement their understanding and reveal gaps in their knowledge. It also fosters empathy and collaboration.
Integration of New with Old: Regularly connect new content with previously learned material to reinforce the relevance and application of knowledge.
Question-Generating: Encourage students to generate their own questions about the material, fostering curiosity and critical thinking.
Conditional Learning: Contextualize learning within real-life scenarios or potential future applications to stimulate interest and engagement.
Diffusion Model: As a head of department, promote generative learning techniques across the curriculum, enhancing their impact.
Self-Testing: Encourage students to regularly check their understanding, promoting metacognition and aiding retention.
One successful example of implementing generative learning strategies is the use of self-generated questions in science classes, which has been shown to increase student engagement and understanding by up to 50%.
As education expert Dr. John Hattie asserts, "The act of generating information, rather than passively receiving it, creates learning that is far more durable and flexible." However, it's important to remember that the effectiveness of these strategies can depend on individual students' learning preferences and needs, and should be adapted accordingly.
In conclusion, by implementing these generative learning strategies, teachers can foster a more active, engaged, and effective learning environment, empowering students to take control of their own learning
What Is the History and Origin of Generative Learning Theory?
Generative learning theory was developed by cognitive psychologist Merlin Wittrock in the 1970s and 1980s, building on constructivist principles. The theory emerged from research showing that learners who actively generate connections between new information and their existing knowledge retain information better than passive recipients. Wittrock's work has been validated by decades of cognitive science research and remains foundational to modern educational psychology.
The educational psychologist Merlin C. Wittrock proposedThe theory of Generative Learning in 1974. Wittrock indicated that new knowledge must be incorporated into the already existing mental schema. This schema may include learner cognitions, pre-existing knowledge, and personal experience. According to Wittrock, through the process of 'generation,' learners create connections between stimuli and the knowledge they already have in their memory.
Therefore, people must create a relationship between the new conceptdemonstrated to them and what they already know for learning. Joining the dots spontaneously is the main aspect of generative learning theory.
Model of generative learning theory
What Are the Three Stages of the Generative Learning Process?
The generative learning process follows the SOI framework: Select, Organize, and Integrate. In the Selection stage, learners identify and focus on relevant information from the material. During Organization, they structure this information into coherent mental representations, and in Integration, they connect new knowledge with their existing understanding to create lasting learning.
The SOI model proposed by Logan Fiorella and Richard Mayer suggests that people generate learning from new information in three stages. This generative model is a great starting point for schools that are using our block building strategy. Allowing children to develop concrete mental models using our block building structures provides teachers with the student schema's inside picture.
This approach has helped learners tackle an abstract concept such as the correct use of an adverb. In one of our recent studies, an English teacher used the blocks to teach the key grammatical concepts in English. In the initial study phase, learners were more engaged and willing to take risks in the classroom. The future studies that we have planned will be looking at how children develop deeper conceptual knowledge across different subjects. The generative model three stages are as follows:
At first, people focus on selecting particular information from what they have heard, seen or read.
Secondly, they organise the details in their active memory. This may include transforming it into a new kind or structuring the details so that it helps them solve a problem or answer a question.
Thirdly they incorporate the new information into the pre-existing schema that enables this prior knowledge to instruct their thoughts about this new knowledge and assure that the new knowledge can incorporate into their pre-existing knowledge or modify their prior knowledge so that the new knowledge can be adapted.
Using the SOI model with the blocks
What Are the Four Core Principles of Generative Learning Theory?
The four main concepts are: active processing (learners must mentally manipulate information), knowledge construction (students build their own understanding), meaningful connections (new information links to prior knowledge), and metacognitive awareness (students monitor their own learning). These principles work together to transform passive information reception into active knowledge creation. Each principle reinforces the others to create deeper, more durable learning outcomes.
The Generative Learning Theory is comprising of four main concepts that instructional developers can integrate into their lessons. They can even use any one of such concepts, according to the requirement of the students and the learning resources involved.
Recall takes place when the learners access information that already exists in their long-term memory. The primary objective is to encourage students to cultivate a concept founded upon information and details they already know. An example of recalling strategies might be having a person review information or repeating it until the concept is fully understood.
Integration takes place when the learners add new details into the knowledge they already possess. The main objective is to modify information to make it more accessible and easy to remember. An example of this learning activity can be establishing analogies to define a concept or asking a student to paraphrase the text.
Organization takes place when learners connect their pre-existing knowledge with new concepts effectively that helps the learners remember. An example of organization strategies may include generating lists and grading individual items or evaluating the main parts of a concept.
Elaboration occurs when the learners are asked to connect new concepts with the knowledge they’ve already acquired in creative ways. An example of elaboration strategies is imagining how the new knowledge matches pre-existing knowledge or daily work.
What Additional Activities Support Generative Learning Beyond Basic Strategies?
Beyond core strategies, teachers can use elaborative interrogation (asking why questions), drawing diagrams to represent concepts, creating test questions, and developing real-world applications of concepts. Activities like reciprocal teaching, where students take turns leading discussions, and creating multimedia presentations also engage generative processes. The key is ensuring students actively transform information rather than simply repeating it.
Mayer and Fiorella used the SOI model to study various activities that students can do in class. They identified eight activities that may have strong generative ability. These include:
Summarizing: Learning through the summarization method requires students to pick the main ideas, organizing these ideas into a logical pattern, and incorporating new knowledge with pre-existing knowledge.
Mapping: This strategy includes a variety of techniques, such as graphic organizers, knowledge maps and concept maps. It is a generative strategy because the students pick important words that indicate the main ideas, organize these ideas by establishing links between them, and incorporate new knowledge with pre-existing knowledge by specifying the overall pattern of the map.
Drawing: Students provide a pictorial representation of the text while using drawing as a learning strategy. Drawing is a generative process because it involves selecting related ideas from the text, organizing the concepts in pictorial form, and making use of pre-existing knowledge to demonstrate the meaning of the ideas in the drawing.
Imagining: Students build mental impressions of the topic to be learned while using imagining as a learning strategy. Just like drawing, imagining is also a generative strategy.
Self-testing: Students choose the most relevant information during self-testing or retrieval-based learning, followed by organizing and incorporating knowledge by making connections between new and old information.
Self-explaining: In the self-explaining technique, the students explain the details of the lesson to themselves. Self-explaining is a generative strategy because students determine the most relevant knowledge, explain the details in their own words, organize the knowledge by making inferences, and incorporate information with pre-existing knowledge during the explanations.
Teaching: The main purpose of teaching is to help others in learning. Teaching is somewhat close to self-explaining, but it sets itself apart depending upon the recipient of the teachings.
Enacting: When learners enact, they perform gestures or manipulate things relevant to the knowledge to be learned. It is also a generative learning technique because students choose the actions to perform, organize the details through the actions, and incorporate new knowledge with pre-existing knowledge during the process.
Summary of generative learning activities
These activities are frequently used by educators in the classroom but with different goals in mind. For instance, self-testing is normally used as a revision aid after the learning and summarizing is commonly used for creating notes that can be used again in the future. However, Fiorella and Mayer’s work suggests that these activities can be used in particular ways to generate learning through the SOI model.
Teachers can use mind-maps in the class and ask students to turn information provided to them into a spider diagram. Then the students would use their notes for completing the further task at another date. The mind map itself wouldn't do much in terms of generating learning and would eventually look something like this.
using graphic organisers as a generative learning tool
For turning the mind map into generative, it must be ensured that the students must create the SOI model. First, they must have a definite goal in mind, then they have to be more selective for what they pick from the initial knowledge. Next, they must categorize the details to organize it. Finally, they must demonstrate how their pre-existing knowledge about the topic relates to the details presented on the map.
Kolb's experiential learning cycle aligns with generative learning through its emphasis on active engagement and reflection. The cycle's four stages (concrete experience, reflective observation, abstract conceptualization, and active experimentation) mirror generative processes where learners actively construct understanding through experience and reflection. Both frameworks emphasize that deep learning occurs when students actively process and apply information rather than passively receive it.
In 1984, David Kolb presented a model to explain the process of learning from experience. According to this model, people go through four stages while learning from experience:
David Kolb suggests that for effective learning, the learner needs to progress through the cycle. Also, the learner can embark on the cycle at any one of the four stages of the cycle with logical progression.
David Kolb suggested that while learning from experience, people must pass through four stages. They can start from the theory of why something could work, and then they can propose a plan for using it in any specific context. Also, they can get the experience of doing it in reality before revealing whether it performed according to the expectation or they had to make any adjustments.
How Do I Design Effective Generative Learning Tasks for Students?
Effective generative learning tasks require students to transform information by explaining, organizing, or applying it in new ways. Start by identifying the core concepts students need to understand, then design activities that require them to actively process this information through summarization, comparison, or problem-solving. Ensure tasks include opportunities for students to connect new material to their prior knowledge and provide clear criteria for successful completion.
If you are interested in embracing the generative learning theory in your school, we would suggest engaging your staff in a series of professional development sessions. The generative learning strategies are probably being used in your school already; shifting educators mindsets to the theory is another matter. We must remember that these evidence-informed activities help direct, meaningful learning.
The generative learning theory helps us think about the learning experience in a new way. The learning material becomes something that has to be interpreted by the student and built upon. The mental modelling activities that our students are engaged with using the block building strategy really embrace the idea of learning as building.
That is to say; the mental models have to be constructed carefully by the students. Knowledge activation happens as students integrate what they already know with the 'to be learnt material'. This approach to active recall enables pupils to direct their attention to conceptual declarative knowledge.
The generative model puts student understanding at the centre of the theory. The mental modelling strategy that we have been researching and developing makes the learning process visible for everyone. In one of our initial study phases with Bedfordshire University, teachers reported how they could see the individual differences of their students more acutely using the blocks.
The difference in the builds represented how the students were tackling the key concepts they were encountering in the curriculum. Students were generating understanding differently. This became especially apparent when students tackled complex materials.
The universal thinking framework also has the generative theory at its core. The key message when using this new taxonomy is that declarative concepts have to be built. Knowledge has to be constructed meaningfully using cognitive actions. Key concepts don't just arrive in the students head; combining the block building strategy with the framework enables classrooms to bring a sense of architecture to the learning process.
References
Caviglioli, O. (2018). Understanding How We Learn: A Visual Guide. Routledge.
Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity. Cambridge University Press.
Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717-741.
Kolb, D. A. (1984). Experience as the source of learning and development. Upper Sadle River: Prentice Hall.
Frequently Asked Questions
What is generative learning and how does it differ from traditional teaching methods?
Generative learning is an active approach where students create their own understanding by summarising, generating questions, and explaining ideas in their own words, rather than passively receiving information. Research shows that students using generative strategies outperform their peers by up to 30% on comprehension tests because they actively integrate new information into their existing knowledge base.
Which generative learning strategies are most effective for different age groups?
Mind mapping works well for all ages with adaptation, whilst peer teaching is most effective for middle primary to secondary students who have the confidence to explain concepts to others. Summarising strategies are particularly beneficial for upper primary to secondary students who have developed sufficient writing skills to process complex texts effectively.
How can I start implementing generative learning in my classroom tomorrow?
Begin with simple techniques like having students summarise lessons in their own words or create concept maps linking new vocabulary to familiar concepts. You can then progress to more complex activities such as having students generate their own questions about the material or teach concepts to their classmates.
What are the main challenges teachers face when using generative learning strategies?
The primary challenges include ensuring students have the prerequisite skills (such as strong writing abilities for summarising) and recognising that strategies work differently for each learner. Some students may need additional support to engage in generative learning, whilst others may excel with minimal guidance, requiring teachers to adapt their approach accordingly.
How do I know if generative learning strategies are working for my students?
Look for improvements in comprehension test scores (research shows up to 30% improvement), increased student engagement during discussions, and students' ability to make connections between new and previously learned material. You can also encourage self-testing where students regularly check their own understanding, which promotes metacognition and aids retention.
Can you give me a specific classroom example of generative learning in action?
An English teacher might instruct students to draw concept maps linking new vocabulary words to familiar ones, enabling students to connect new concepts to pre-existing knowledge. In science classes, self-generated questions have been shown to increase student engagement and understanding by up to 50% as students actively construct their own learning.
How does generative learning support students with different learning preferences?
Generative learning offers multiple strategies to suit different learners: visual learners benefit from mind mapping and concept diagrams, whilst students who learn through discussion excel at peer teaching activities. The key is recognising that generative strategies are not one-size-fits-all solutions but tools that can be adapted to meet each learner's unique needs and pace.
Generative learning is one of the most effective approaches to deep learning, backed by decades of cognitive science research. Unlike passive reception of information, generative learning requires students to actively make sense of material by creating their own understanding. When students summarise, create concept maps, generate questions, or explain ideas in their own words, they build stronger and more durable knowledge. This guide explores the research behind generative learning and practical strategies you can implement immediately.
Key Takeaways
Beyond Passive Learning: Discover why students who generate their own summaries outperform peers by 30% and how to activate this powerful cognitive process
The SOI Framework: Master the three-stage model that transforms how students select, organise and integrate knowledge for lasting understanding
Nine Classroom Strategies: From mind mapping to peer teaching: practical techniques that turn students into active knowledge creators, not passive receivers
Individual Learning Differences: Why generative strategies work differently for each student and how to adapt your approach for maximum impact
Feature
Summarizing
Mind Mapping
Peer Teaching
Best For
Processing complex texts and identifying main ideas
Visual learners connecting concepts and vocabulary
Deepening understanding through explanation
Key Strength
30% improvement in comprehension tests
Links new knowledge to existing understanding
Activates knowledge through teaching others
Limitation
Requires strong writing skills
May be challenging for non-visual learners
Needs confident students and time
Age Range
Upper primary to secondary
All ages with adaptation
Middle primary to secondary
This theory proposes that the depth of our understanding, or what we often term as "deep learning", relies on the learner's ability to actively integrate new information into their existing knowledge base.
Key to this theory is the notion of the 'generative process', which involves the cognitive work of organizing and integrating information during the learning process. This is no abstract concept, but a practice that can yield powerful results in the classroom.
Consider the English teacher who instructs students to draw concept maps linking new vocabulary words to familiar ones. Here, the generative learning strategy of summarizing and mapping concepts enables students to connect new declarative concepts to pre-existing knowledge, fostering a deeper understanding.
Research supports this approach, with one study showing that students employing generative strategies outperform their peers on tests of comprehension by as much as 30%.
Educational psychologists emphasize the role of the learner as an active source of learning, where knowledge activation and knowledge creation are central to the learning process.
As a renowned educational psychologist, puts it, "Learning is not a passive absorption of information, but an active process of constructing understanding, where students' pre-existing knowledge serves as a foundation upon which new learning can be built."
However, Generative Learning Theory recognizes individual differences among learners. Not all students will use the same strategies or learn at the same pace. Some may need additional support to engage in generative learning, while others may excel with minimal guidance.
The generative models of learning are not one-size-fits-all solutions, but tools that can be adapted to suit the unique needs of each learner.
In essence, Generative Learning Theory encourages learners to become active participants in their own education, transforming new information into meaningful, lasting knowledge. It's a powerful reminder that in learning, as in life, we get out what we put in.
How Can I Use Generative Learning Strategies in My Classroom?
Teachers can implement generative learning through nine proven strategies including concept mapping, self-explanation, peer teaching, and creating practice questions. Start with simple techniques like having students summarize lessons in their own words, then progress to more complex activities like creating analogies or teaching concepts to classmates. Research shows these active learning methods can improve student performance by up to 30% compared to passive learning.
In the dynamic world of primary and secondary education, embracing Generative Learning Theory can truly revolutionize your teaching approach, fostering knowledge activation and helping students construct mental models that promote deep, lasting learning. Here are nine ways to bring generative learning into your classroom:
Elucidation of Key Concepts: Clearly explain key concepts and encourage students to explain these concepts in their own words. This active reformulation helps embed new learning into existing knowledge structures.
Example-Based Learning: Use concrete examples that relate to students' experiences, enhancing comprehension and recall.
Mind Mapping: Encourage students to create a spider diagram or similar graphic organizers to visually represent and connect ideas.
Peer Teaching: Students teaching others can cement their understanding and reveal gaps in their knowledge. It also fosters empathy and collaboration.
Integration of New with Old: Regularly connect new content with previously learned material to reinforce the relevance and application of knowledge.
Question-Generating: Encourage students to generate their own questions about the material, fostering curiosity and critical thinking.
Conditional Learning: Contextualize learning within real-life scenarios or potential future applications to stimulate interest and engagement.
Diffusion Model: As a head of department, promote generative learning techniques across the curriculum, enhancing their impact.
Self-Testing: Encourage students to regularly check their understanding, promoting metacognition and aiding retention.
One successful example of implementing generative learning strategies is the use of self-generated questions in science classes, which has been shown to increase student engagement and understanding by up to 50%.
As education expert Dr. John Hattie asserts, "The act of generating information, rather than passively receiving it, creates learning that is far more durable and flexible." However, it's important to remember that the effectiveness of these strategies can depend on individual students' learning preferences and needs, and should be adapted accordingly.
In conclusion, by implementing these generative learning strategies, teachers can foster a more active, engaged, and effective learning environment, empowering students to take control of their own learning
What Is the History and Origin of Generative Learning Theory?
Generative learning theory was developed by cognitive psychologist Merlin Wittrock in the 1970s and 1980s, building on constructivist principles. The theory emerged from research showing that learners who actively generate connections between new information and their existing knowledge retain information better than passive recipients. Wittrock's work has been validated by decades of cognitive science research and remains foundational to modern educational psychology.
The educational psychologist Merlin C. Wittrock proposedThe theory of Generative Learning in 1974. Wittrock indicated that new knowledge must be incorporated into the already existing mental schema. This schema may include learner cognitions, pre-existing knowledge, and personal experience. According to Wittrock, through the process of 'generation,' learners create connections between stimuli and the knowledge they already have in their memory.
Therefore, people must create a relationship between the new conceptdemonstrated to them and what they already know for learning. Joining the dots spontaneously is the main aspect of generative learning theory.
Model of generative learning theory
What Are the Three Stages of the Generative Learning Process?
The generative learning process follows the SOI framework: Select, Organize, and Integrate. In the Selection stage, learners identify and focus on relevant information from the material. During Organization, they structure this information into coherent mental representations, and in Integration, they connect new knowledge with their existing understanding to create lasting learning.
The SOI model proposed by Logan Fiorella and Richard Mayer suggests that people generate learning from new information in three stages. This generative model is a great starting point for schools that are using our block building strategy. Allowing children to develop concrete mental models using our block building structures provides teachers with the student schema's inside picture.
This approach has helped learners tackle an abstract concept such as the correct use of an adverb. In one of our recent studies, an English teacher used the blocks to teach the key grammatical concepts in English. In the initial study phase, learners were more engaged and willing to take risks in the classroom. The future studies that we have planned will be looking at how children develop deeper conceptual knowledge across different subjects. The generative model three stages are as follows:
At first, people focus on selecting particular information from what they have heard, seen or read.
Secondly, they organise the details in their active memory. This may include transforming it into a new kind or structuring the details so that it helps them solve a problem or answer a question.
Thirdly they incorporate the new information into the pre-existing schema that enables this prior knowledge to instruct their thoughts about this new knowledge and assure that the new knowledge can incorporate into their pre-existing knowledge or modify their prior knowledge so that the new knowledge can be adapted.
Using the SOI model with the blocks
What Are the Four Core Principles of Generative Learning Theory?
The four main concepts are: active processing (learners must mentally manipulate information), knowledge construction (students build their own understanding), meaningful connections (new information links to prior knowledge), and metacognitive awareness (students monitor their own learning). These principles work together to transform passive information reception into active knowledge creation. Each principle reinforces the others to create deeper, more durable learning outcomes.
The Generative Learning Theory is comprising of four main concepts that instructional developers can integrate into their lessons. They can even use any one of such concepts, according to the requirement of the students and the learning resources involved.
Recall takes place when the learners access information that already exists in their long-term memory. The primary objective is to encourage students to cultivate a concept founded upon information and details they already know. An example of recalling strategies might be having a person review information or repeating it until the concept is fully understood.
Integration takes place when the learners add new details into the knowledge they already possess. The main objective is to modify information to make it more accessible and easy to remember. An example of this learning activity can be establishing analogies to define a concept or asking a student to paraphrase the text.
Organization takes place when learners connect their pre-existing knowledge with new concepts effectively that helps the learners remember. An example of organization strategies may include generating lists and grading individual items or evaluating the main parts of a concept.
Elaboration occurs when the learners are asked to connect new concepts with the knowledge they’ve already acquired in creative ways. An example of elaboration strategies is imagining how the new knowledge matches pre-existing knowledge or daily work.
What Additional Activities Support Generative Learning Beyond Basic Strategies?
Beyond core strategies, teachers can use elaborative interrogation (asking why questions), drawing diagrams to represent concepts, creating test questions, and developing real-world applications of concepts. Activities like reciprocal teaching, where students take turns leading discussions, and creating multimedia presentations also engage generative processes. The key is ensuring students actively transform information rather than simply repeating it.
Mayer and Fiorella used the SOI model to study various activities that students can do in class. They identified eight activities that may have strong generative ability. These include:
Summarizing: Learning through the summarization method requires students to pick the main ideas, organizing these ideas into a logical pattern, and incorporating new knowledge with pre-existing knowledge.
Mapping: This strategy includes a variety of techniques, such as graphic organizers, knowledge maps and concept maps. It is a generative strategy because the students pick important words that indicate the main ideas, organize these ideas by establishing links between them, and incorporate new knowledge with pre-existing knowledge by specifying the overall pattern of the map.
Drawing: Students provide a pictorial representation of the text while using drawing as a learning strategy. Drawing is a generative process because it involves selecting related ideas from the text, organizing the concepts in pictorial form, and making use of pre-existing knowledge to demonstrate the meaning of the ideas in the drawing.
Imagining: Students build mental impressions of the topic to be learned while using imagining as a learning strategy. Just like drawing, imagining is also a generative strategy.
Self-testing: Students choose the most relevant information during self-testing or retrieval-based learning, followed by organizing and incorporating knowledge by making connections between new and old information.
Self-explaining: In the self-explaining technique, the students explain the details of the lesson to themselves. Self-explaining is a generative strategy because students determine the most relevant knowledge, explain the details in their own words, organize the knowledge by making inferences, and incorporate information with pre-existing knowledge during the explanations.
Teaching: The main purpose of teaching is to help others in learning. Teaching is somewhat close to self-explaining, but it sets itself apart depending upon the recipient of the teachings.
Enacting: When learners enact, they perform gestures or manipulate things relevant to the knowledge to be learned. It is also a generative learning technique because students choose the actions to perform, organize the details through the actions, and incorporate new knowledge with pre-existing knowledge during the process.
Summary of generative learning activities
These activities are frequently used by educators in the classroom but with different goals in mind. For instance, self-testing is normally used as a revision aid after the learning and summarizing is commonly used for creating notes that can be used again in the future. However, Fiorella and Mayer’s work suggests that these activities can be used in particular ways to generate learning through the SOI model.
Teachers can use mind-maps in the class and ask students to turn information provided to them into a spider diagram. Then the students would use their notes for completing the further task at another date. The mind map itself wouldn't do much in terms of generating learning and would eventually look something like this.
using graphic organisers as a generative learning tool
For turning the mind map into generative, it must be ensured that the students must create the SOI model. First, they must have a definite goal in mind, then they have to be more selective for what they pick from the initial knowledge. Next, they must categorize the details to organize it. Finally, they must demonstrate how their pre-existing knowledge about the topic relates to the details presented on the map.
Kolb's experiential learning cycle aligns with generative learning through its emphasis on active engagement and reflection. The cycle's four stages (concrete experience, reflective observation, abstract conceptualization, and active experimentation) mirror generative processes where learners actively construct understanding through experience and reflection. Both frameworks emphasize that deep learning occurs when students actively process and apply information rather than passively receive it.
In 1984, David Kolb presented a model to explain the process of learning from experience. According to this model, people go through four stages while learning from experience:
David Kolb suggests that for effective learning, the learner needs to progress through the cycle. Also, the learner can embark on the cycle at any one of the four stages of the cycle with logical progression.
David Kolb suggested that while learning from experience, people must pass through four stages. They can start from the theory of why something could work, and then they can propose a plan for using it in any specific context. Also, they can get the experience of doing it in reality before revealing whether it performed according to the expectation or they had to make any adjustments.
How Do I Design Effective Generative Learning Tasks for Students?
Effective generative learning tasks require students to transform information by explaining, organizing, or applying it in new ways. Start by identifying the core concepts students need to understand, then design activities that require them to actively process this information through summarization, comparison, or problem-solving. Ensure tasks include opportunities for students to connect new material to their prior knowledge and provide clear criteria for successful completion.
If you are interested in embracing the generative learning theory in your school, we would suggest engaging your staff in a series of professional development sessions. The generative learning strategies are probably being used in your school already; shifting educators mindsets to the theory is another matter. We must remember that these evidence-informed activities help direct, meaningful learning.
The generative learning theory helps us think about the learning experience in a new way. The learning material becomes something that has to be interpreted by the student and built upon. The mental modelling activities that our students are engaged with using the block building strategy really embrace the idea of learning as building.
That is to say; the mental models have to be constructed carefully by the students. Knowledge activation happens as students integrate what they already know with the 'to be learnt material'. This approach to active recall enables pupils to direct their attention to conceptual declarative knowledge.
The generative model puts student understanding at the centre of the theory. The mental modelling strategy that we have been researching and developing makes the learning process visible for everyone. In one of our initial study phases with Bedfordshire University, teachers reported how they could see the individual differences of their students more acutely using the blocks.
The difference in the builds represented how the students were tackling the key concepts they were encountering in the curriculum. Students were generating understanding differently. This became especially apparent when students tackled complex materials.
The universal thinking framework also has the generative theory at its core. The key message when using this new taxonomy is that declarative concepts have to be built. Knowledge has to be constructed meaningfully using cognitive actions. Key concepts don't just arrive in the students head; combining the block building strategy with the framework enables classrooms to bring a sense of architecture to the learning process.
References
Caviglioli, O. (2018). Understanding How We Learn: A Visual Guide. Routledge.
Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity. Cambridge University Press.
Fiorella, L., & Mayer, R. E. (2016). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717-741.
Kolb, D. A. (1984). Experience as the source of learning and development. Upper Sadle River: Prentice Hall.
Frequently Asked Questions
What is generative learning and how does it differ from traditional teaching methods?
Generative learning is an active approach where students create their own understanding by summarising, generating questions, and explaining ideas in their own words, rather than passively receiving information. Research shows that students using generative strategies outperform their peers by up to 30% on comprehension tests because they actively integrate new information into their existing knowledge base.
Which generative learning strategies are most effective for different age groups?
Mind mapping works well for all ages with adaptation, whilst peer teaching is most effective for middle primary to secondary students who have the confidence to explain concepts to others. Summarising strategies are particularly beneficial for upper primary to secondary students who have developed sufficient writing skills to process complex texts effectively.
How can I start implementing generative learning in my classroom tomorrow?
Begin with simple techniques like having students summarise lessons in their own words or create concept maps linking new vocabulary to familiar concepts. You can then progress to more complex activities such as having students generate their own questions about the material or teach concepts to their classmates.
What are the main challenges teachers face when using generative learning strategies?
The primary challenges include ensuring students have the prerequisite skills (such as strong writing abilities for summarising) and recognising that strategies work differently for each learner. Some students may need additional support to engage in generative learning, whilst others may excel with minimal guidance, requiring teachers to adapt their approach accordingly.
How do I know if generative learning strategies are working for my students?
Look for improvements in comprehension test scores (research shows up to 30% improvement), increased student engagement during discussions, and students' ability to make connections between new and previously learned material. You can also encourage self-testing where students regularly check their own understanding, which promotes metacognition and aids retention.
Can you give me a specific classroom example of generative learning in action?
An English teacher might instruct students to draw concept maps linking new vocabulary words to familiar ones, enabling students to connect new concepts to pre-existing knowledge. In science classes, self-generated questions have been shown to increase student engagement and understanding by up to 50% as students actively construct their own learning.
How does generative learning support students with different learning preferences?
Generative learning offers multiple strategies to suit different learners: visual learners benefit from mind mapping and concept diagrams, whilst students who learn through discussion excel at peer teaching activities. The key is recognising that generative strategies are not one-size-fits-all solutions but tools that can be adapted to meet each learner's unique needs and pace.